skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Xiaona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation. 
    more » « less